WELCOME TO OUR BLOG Latest News & Media

What Is Predictive Maintenance?

Predictive maintenance (PdM) involves the execution of system checks at predetermined intervals to analyze equipment health. These controls are usually in the form of continual data collection (i.e., temperature, light, pressure, and sound/vibration) from equipment through the use of sensors. The results of these checks determine whether maintenance activities are required.

Aiming to Reduce Unscheduled Downtime

For manufacturers that work on tight margins and even tighter timeframes, unscheduled downtime can be a nightmare. It can cut right to the bottom line—ruining a quarter, a year, or even a company. The calculable costs are clear — ARC Advisory Group reports that the global process industry loses up to $20 billion of its annual production (about $12,500 per hour) due to unscheduled downtime. Hoping for the best and waiting for something to break is costly—it’s somewhere around 50 percent more expensive to repair an asset that broke in production than if the problem was identified before the failure.

So, with failures potentially harming personnel and the environment, manufacturers need to tame their complex, interdependent operations. Reliability itself can be a significant competitive advantage. But, getting there requires a fresh approach.

The Promise of Predictive Maintenance

Predictive maintenance promises to enable the scheduling of corrective maintenance before an issue surfaces. It should also prevent surprise equipment failures. It shows what equipment will need maintenance and when. As a result, companies can allocate the right parts and ensure they can deploy field technicians only when needed. Instead of dealing with an overflowing schedule of unplanned failures that require immediate and time-consuming production stops, predictive maintenance helps companies schedule shorter outages when it makes sense to slow production.

Although it might be confused with preventive maintenance, predictive maintenance is different. Instead of looking at averages or comparable statistics, it looks at the condition of the equipment in real time. As a result, it can make predictions based on the actual conditions, not averages or suppositions.

Just-in-time manufacturing is the goal for most companies. It means that a company doesn’t get stuck with too much inventory and reaps profits faster because it only invests in parts or other components exactly when it needs them. Of course, it requires precise timing. Every element in the value chain needs to be ready when called upon. So, a faulty piece of equipment that malfunctions at just the wrong time can cause a company to miss production quotas, lose business, or even threaten the safety of a plant.

There are numerous technologies that predictive maintenance employs, including infrared, acoustic, video, and vibration analysis. It can even look at the oil that lubricates a machine to determine if it is functioning to spec.

Looking at Assets Individually and in Groups

Traditional methods monitor single machines or scattered pieces of equipment. They don’t see the entire picture. Predictive maintenance using cognitive machine learning techniques can take all the individual views of thousands of assets to build an integrated view of a factory floor, providing complete visibility and highlighting how assets and their workflows work together. This is so that, if one asset is predicted to go down, it’s easy to understand the broader impact.

One reason that predictive maintenance is a rising trend is that it greatly reduces human errors, which can cause up to 82 percent of asset failures. As connected assets increase at a dizzying pace due to the IoT, industrial data is overwhelming manufacturers, because human beings simply can’t absorb and process all of this data. Without technology to help them, even highly skilled data scientists will almost certainly miss some critical data points. Predictive maintenance that uses data science levels the playing field by applying cognitive techniques for sensor data analysis.

As a result, every enterprise can make automated intelligence available across all levels of decision-makers, ensuring people who need the information to stay in the know.

Share the Article:
Share on facebook
Share on twitter
Share on linkedin